Abstract

The relationship between tooth roots and diet is largely unexplored, although a logical relationship between harder diets and increased root surface area is suggested. Existing studies of primates, carnivorans and phyllostomid bats have indicated a relationship between diet hardness, bite force and tooth root surface area. The goal of this study was to determine whether root surface area can act as a potential surrogate for bite force and diet in cricetid rodents. Using microcomputed tomography (microCT), tooth root morphology from six species of rodents, two grass eaters (Calomys callosus and Reithrodon auritus), two seed eaters (Phyllotis darwini and Ochrotomys nuttalli) and two insect eaters (Akodon azarae and Oxymycterus hispidus) were compared. Similar to other studies, these rodents did exhibit differences in tooth root surface area based on diet classification, but food hardness did not seem to be a factor. Grass-eating species showed significantly larger roots relative to the other diet groups (p = 0.001). Bite force was estimated using skull measurements. Seed eaters were found to have a larger bite force, followed by grass and insect eaters, though the trend did not reach statistical significance (p = 0.058). No strong relationship was found between estimated bite force and tooth root surface area. In this study, the mechanics of grass eating seem to have a stronger effect on tooth root surface area than bite force. microCT allows the nondestructive quantification of previously difficult-to-access tooth morphology; this method shows the potential for tooth roots to provide valuable dietary, behavioral and ecological information in rodents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call