Abstract

CRH has been implicated to play a key role in the control of human pregnancy and parturition. Large-conductance potassium channels (BKCa) play a pivotal role in the modulation of uterine contractility during pregnancy. The objectives of the present study were to investigate the effect of CRH on BKCa expression in human pregnant myometrial cells. Myometrial tissues were collected at cesarean section from pregnant women not-in-labor (TNL) or in-labor (TL) at term, and myocytes were isolated and cultured. CRH was identified in human pregnant myometrium and mainly expressed in myometrial myocytes. Cultured myometrial cells were able to secrete CRH. In TNL myometrial cells, CRH treatment increased the expression of BKCa α- and β-subunits. CRH receptor type 1 (CRH-R1) antagonist, antalarmin, decreased whereas CRH receptor type 2 (CRH-R2) antagonist, astressin2b, increased the expression of BKCa. CRH-R2 small interfering RNA (siRNA) caused an increase, but CRH-R1 siRNA resulted in a decrease, in BKCa expression. In contrast to TNL cells, CRH exhibited an opposite effect on BKCa expression in TL myometrial cells, i.e. decreased BKCa expression. Antalarmin enhanced but astressin2b reduced BKCa expression. CRH-R2 siRNA decreased whereas CRH-R1 siRNA increased BKCa expression. 1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one significantly inhibited the frequency of spontaneous contractions of myometrial strips, and this effect was significantly decreased in TL strips compared with TNL ones. Our data suggest that CRH-R1 and CRH-R2 show differential regulation of BKCa expression. These effects mediated by CRH-R1 and CRH-R2 are changed after the onset of labor. This leads us to suggest that CRH may fine-tune myometrial contractility by modulating the expression of BKCa during pregnancy and labor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call