Abstract

AbstractThe salt damage such as the snow melting salts in winter or the sea salt particle flying in the coast region has significant effect on the corrosive environment of the automobile. Moreover, the corrosive environment of the automobile become more severe by the wet/dry cyclic condition, for example, a car gets wet with the splash water and dryness by the thermal loading while driving. On the other hand, the further application of the high strength stainless steel to the automobile parts is expected because it can contribute durability and lightening. Then, it is important to clarify the corrosion characteristic of this material under the salt damage environment. In this study cold rolled type304 stainless steel pipe with shot peening were used to investigate the corrosion property of high strength type304 stainless steel for automotive applications in a salt damage environment. The hardness of the pipe was about HV450, and a clear difference was not admitted in the thickness direction. A crevice was created between the outside of the pipe and an O-ring, and the pipe was applied stress by press fitting of another part. The corrosion property of the sample was evaluated in an automotive field test in Okinawa. Cracking from a corrosion pit was observed in the crevice. The Electron Prove Micro Analysis(EPMA) indicated that pitting corrosion was caused by chloride (from sea salt) concentrated in the crevice. The crack occurred in the residual compressive stress layer created by shot peening. In this regard, it was confirmed by the XRD analysis that about 85% of the metallographic structure had been transformed into the martensite. And the observation of the metallographic structure by the Electron Back Scatter Diffraction(EBSD) clarified the crystal grain was greatly transformed by the strong processing. It means that the accumulation of strain occurred. These two factors are considered to raise the receptivity to the crack generation of this sample. A crack generated at a corrosion pit was reproduced in a wet/dry cyclic corrosion test after one flash of artificial seawater. To investigate the crack generating mechanism, a corrosion pit was previously generated on the sample by cyclic corrosion test, after which a cathodic charge test in artificial sea water was done. Similar cracking from a corrosion pit was observed on the sample after this test. Therefore, the cracking is presumed to be Hydrogen Embrittlement-Stress Corrosion Cracking(HE-SCC)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call