Abstract

BackgroundAs attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses.ResultsAge estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates.ConclusionsWe hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-014-0220-1) contains supplementary material, which is available to authorized users.

Highlights

  • As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms

  • To provide novel insights on insect diversification dynamics, and especially on insect groups that do not feed on live plant tissues, we investigated how Cretaceous changes impacted the diversification of a hyperdiverse beetle family, the Tenebrionidae

  • Mesozoic origin and diversification of a species-rich beetle family Dating analyses unequivocally support an ancient origin for Tenebrionidae at the end of the Early Jurassic, which significantly predates previous molecular estimates of tenebrionid ages [22,31]

Read more

Summary

Introduction

As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. In the fossil record of marine and terrestrial taxa, the Cretaceous Period (145–66 Million years ago (Ma)) is usually considered a time of major reorganization and modernization of ecosystems characterized by the extinction of groups that were formerly dominant and the appearance and subsequent diversification of new groups [1,2]. The diversification rates in dinosaurs remained constant through the KTR [1]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call