Abstract

The Jiaojia Fault (JJF) in the Jiaodong area of eastern China is an important NNE-trending structure that is subsidiary to the regional Tancheng–Lujiang (Tan-Lu) Fault Zone, and hosts >1200 t of gold reserves contained in disseminated and stockwork ore, dominantly in the footwall of the fault. We present new zircon U–Pb, apatite fission track, and illite K–Ar data along the JJF and have delineated its tectonic history focusing on its formation and reactivation. Zircon U–Pb dating shows that the Shangzhuang granite is a composite body with ages between 132 ± 1 and 127 ± 1 Ma. Illite K–Ar ages for the fault’s gouge range from 83 ± 2 to 68 ± 2 Ma, and the measured apatite fission track ages for ores are between 55 and 21 Ma. Previous zircon U–Pb geochronology and structural studies suggest that the JJF was originally activated in the Jurassic during 160–150 Ma as a sinistral fault. The JJF was a normal fault in the Early Cretaceous due to NW–SE orientated tension and NE–SW compression, which lasted from 135 to 120 Ma. This was followed by sinistral strike–slip faulting due to NW–SE compression and NE–SW tension during 120–110 Ma, and it changed to normal displacement at ca. 110 Ma. Our apatite fission track data analysis and thermal modeling of representative samples suggest that there was a subsequent dextral reactivation of the fault at ca. 55 Ma. Previous age data of ca. 130–110 Ma for gold mineralization along the JJF coincides with the Early Cretaceous magmatism and is coeval with the transition from normal faulting to sinistral strike–slip faulting of the JJF in Early Cretaceous, which is interpreted to be due to changing direction of the subducting Pacific Plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call