Abstract

Recovering multi-person 3D poses from a single image is a challenging problem due to inherent depth ambiguities, including root-relative depth and absolute root depth. Current bottom-up methods show promising potential to mitigate absolute root depth ambiguity through explicitly aggregating global contextual cues. However, these methods treat the entire image region equally during root depth regression, ignoring the negative impact of irrelevant regions. Moreover, they learn shared features for both depths, each of which focuses on different information. This sharing mechanism may result in negative transfer, thus diminishing root depth prediction accuracy. To address these challenges, we present a novel bottom-up method, Crowd Region Enhancement Network (CRENet), incorporating a Feature Decoupling Module (FDM) and a Global Attention Module (GAM). FDM explicitly learns the discriminative feature for each depth through adaptively recalibrating its channel-wise responses and fusing multi-level features, which makes the model focus on each depth prediction separately and thus avoids the adverse effect of negative transfer. GAM highlights crowd regions while suppressing irrelevant regions using the attention mechanism and further refines the attention regions based on the confidence measure about the attention, which is beneficial to learn depth-related cues from informative crowd regions and facilitate root depth estimation. Comprehensive experiments on benchmarks MuPoTS-3D and CMU Panoptic demonstrate that our method outperforms the state-of-the-art bottom-up methods in absolute 3D pose estimation and is applicable to in-the-wild images, which also indicates that learning depth-specific features and suppressing the noise signals can significantly benefit multi-person absolute 3D pose estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.