Abstract

We exhibit a Cremona transformation of $\mathbb{P}^{4}$ such that the base loci of the map and its inverse are birational to K3 surfaces. The two K3 surfaces are derived equivalent but not isomorphic to each other. As an application, we show that the difference of the two K3 surfaces annihilates the class of the affine line in the Grothendieck ring of varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.