Abstract

The sedimentation of a homogeneous distribution of spherical composite particles and the fluid flow through a bed of these particles are investigated theoretically. Each composite particle is composed of a spherical solid core and a surrounding porous shell. In the fluid-permeable porous shell, idealized hydrodynamic frictional segments are assumed to distribute uniformly. The effect of interactions among the particles is taken into explicit account by employing a fundamental cell-model representation which is known to provide good predictions for the motion of a swarm of nonporous spheres within a fluid. In the limit of a small Reynolds number, the Stokes and Brinkman equations are solved for the flow field in a unit cell, and the drag force exerted by the fluid on the particle is obtained in a closed form. For a distribution of composite spheres, the normalized mobility of the particles decreases or the particle interactions increase monotonically with a decrease in the permeability of their porous shells. The effect of particle interactions on the creeping motion of composite spheres relative to a fluid can be quite significant in some situations. In the limiting cases, the analytical solutions describing the drag force or mobility for a suspension of composite spheres reduce to those for suspensions of solid spheres and of porous spheres. The hydrodynamic behavior for composite spheres may be approximated by that for permeable spheres when the porous layer is sufficiently thick, depending on the permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call