Abstract

A solid sphere falling through a Bingham plastic moves in a small envelope of fluid with shape that depends on the yield stress. A finite-element/Newton method is presented for solving the free-boundary problem composed of the velocity and pressure fields and the yield surfaces for creeping flow. Besides the outer surface, solid occurs as caps at the front and back of the sphere because of the stagnation points in the flow. The accuracy of solutions is ascertained by mesh refinement and by calculation of the integrals corresponding to the maximum and minimum variational principles for the problem. Large differences from the Newtonian values in the flow pattern around the sphere and in the drag coefficient are predicted, depending on the dimensionless value of the critical yield stressYgbelow which the material acts as a solid. The computed flow fields differ appreciably from Stokes’ solution. The sphere will fall only whenYgis below 0.143 For yield stresses near this value, a plastic boundary layer forms next to the sphere. Boundary-layer scalings give the correct forms of the dependence of the drag coefficient and mass-transfer coefficient on yield stress for values near the critical one. The Stokes limit of zero yield stress is singular in the sense that for any small value ofYgthere is a region of the flow away from the sphere where the plastic portion of the viscosity is at least as important as the Newtonian part. Calculations For the approach of the flow field to the Stokes result are in good agreement with the scalings derived from the matched asymptotic expansion valid in this limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.