Abstract

The objective of this study is to elucidate creep-fatigue interaction in Mode I delamination crack propagation of polymers reinforced by carbon fibers at high temperatures. The materials tested are two unidirectionally reinforced laminates, AS4/PEEK (carbon fiber: AS4, matrix: poly-ether-ether-ketone) and T800H/PMR-15 (carbon fiber: T800H, matrix: polyimide). Crack propagation tests are conducted in cyclic loading conditions with and without hold(s) at maximum tension and zero load at 473K for AS4/PEEK laminates and 573K for T800H/PMR-15 laminates, respectively. In fatigue with high frequency, the crack propagation rate per unit cycle da/dN is correlated well with the stress intensity factor range ΔK. However, the crack propagation in AS4/PEEK laminates depends strongly on the load waveform, while that in T800H/PMR-15 laminates is independent of it. The crack propagation in AS4/PEEK laminates is accelerated by the tensile load hold due to the creep deformation of matrix and it is purely time-dependent. In the time-dependent crack propagation, the rate per unit time da/dt is correlated well with the stress intensity factor K at the hold. On the other hand, the time-dependent crack propagation is decelerated by the zero-load-hold because of the creep recovery of matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.