Abstract

Creep/fatigue accelerated failures of K403 superalloy turbine blades are inspected, and the damage behaviors are revealed and failure modes are determined in laboratory. It is concluded that: (1) significant discrepancies of fractographies and cross-sectional microstructures are interpreted by qualitative and quantitative investigations; (2) the observed morphologies are mainly attributed to the dendrite separation and γ' phase rafting behaviors, together with the development of ‘void migration mechanism’, i.e., grain interior → grain boundary → sub grain boundary; (3) the failure of turbine blade changes from the mixed to the intergranular mode, which is essentially controlled by the contribution proportion of creep damage and fatigue damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call