Abstract

Abstract Creep properties and microstructural changes of 25Cr-20Ni-Nb-N steel (KA-SUS310J1TB) were investigated. Creep tests were performed under 20MPa to 380MPa at 600°C to 800°C. Time to rupture was from 53.5h to 23950h. At 650°C or higher, creep strength degraded in the long-term. Rupture elongation and reduction of area decreased with increasing time to rupture at 600°C to 800°C. The reduction of area was lower than 12% after creep rupture for more than 10000h. Creep voids and cracks were observed on grain boundaries in creep ruptured samples. The hardness of head portion of creep ruptured samples increased with increasing time to rupture at 600°C to 800°C. The hardness of gauge portion of creep ruptured samples was higher than that of as received sample. However, the hardness of gauge portion does not strongly depend on time to rupture. No precipitates were observed in as received sample. On the other hand, a large number of precipitates were confirmed after creep rupture at 600°C to 800°C. M23C6, sigma phase, eta nitride and Z phase were detected in creep ruptured samples. The precipitation was confirmed on grain boundaries after short-term creep. The precipitates were also formed inside grains after long-term creep. It was confirmed by optical microscope that the grain boundary seemed to have band-like structure after short-term creep exposure. The Cr depletion zone was detected around grain boundary after short-term creep exposure. The Cr depletion zone can be visible when Cr rich precipitates such as M23C6 and sigma phase are formed on grain boundaries. However, the bandlike structure was not observed after long-term creep exposure because the Cr depletion zone became unclear after long-term creep exposure. Creep voids were formed on grain boundaries and at the interface between precipitates such as M23C6 and sigma phase and matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call