Abstract

The creep rupture behavior of semi-solid cast 7075-T6 Al alloy produced by the Gas Induced Semi-Solid (GISS) process was investigated and compared to that of commercial 7075-T651 Al alloy. The semi-solid cast 7075-T6 Al alloy displayed lower minimum creep rate and longer creep rupture time than the commercial 7075-T651 Al alloy. On the basis of their stress exponent, n, values of 6.3, dislocation creep was seemingly the predominant mechanism controlling the creep deformation of both alloys. The creep rupture time of the semi-solid cast 7075-T6 Al alloy was distinctly longer than that of the commercial 7075-T651 Al alloy at stress regimes of 120–140MPa. This difference was attributed to the lower precipitate coarsening and higher precipitate density in the semi-solid cast alloy. Creep cavities predominately controlled the creep rupture of the semi-solid cast 7075-T6 Al alloy despite the appearance of precipitate coarsening. The commercial 7075-T651 Al alloy creep rupture behavior was controlled by the combination of rapid precipitate coarsening and creep cavities. However, de-cohesion between insoluble particles and the matrix is evidently accelerated with increasing stress to 180MPa, leading to cavity propagation and resulting in the convergence of creep rupture time in the semi-solid cast 7075-T6 Al alloy to that of the commercial 7075-T651 Al alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.