Abstract

The creep behavior of a liquid crystalline epoxy resin (LCER) was investigated and compared with that of a non-LCER prepared from the same epoxy monomer. The experimental data was evaluated using Burgers' model to explain the reinforcing effect of the liquid crystalline (LC) phase. The long-term performance of the material was predicted using the time–temperature superposition principle. The results revealed that the introduction of an LC phase into the resin network can reduce creep strain and creep strain rate of the material, especially at elevated temperatures. Parameters extracted from the simulation indicated that instantaneous elasticity, retardant elasticity, and permanent flow resistance of the resins were enhanced by the presence of the LC phase. A rigid filler effect and a crosslinking effect are proposed to explain the reinforcing mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.