Abstract

Holes in materials can cause improved or unique performance of the material when the sizes, shapes, and orientation of holes as well as grains are controlled in materials. In the paper, a computational method for creep rate induced by hole surface diffusion of porous materials is presented. The driven force for diffusional mass transport along the hole surface is the surface diffusion energy of hole and the strain energy acting on the surface, which is obtained from rigorous elastic theory. In order to apply the present solution to the realistic porous materials the scale effect is considered by using finite element method based on two-dimensional unit cell for porous materials under uniaxial tension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.