Abstract

Vanadium-base alloys are promising candidate materials for application in fusion reactor structural components because of several important advantages. V-4Cr-4Ti has been identified as one of the most promising candidate alloys and was selected for comprehensive tests and examination. In the present investigation, thermal creep rates and stress-rupture life of V-4Cr-4Ti and V-10Cr-5Ti alloys were determined at 600°C. The impurity composition and microstructural characteristics of creep-tested specimens were analyzed and correlated with the measured creep properties. The results of these tests show that V-4Cr-4Ti, which contains impurity compositions typical of a commercially fabricated vanadium-based alloy, exhibits creep strength substantially superior to that of V-20Ti, HT-9, or type 316 stainless steel. The V-10Cr-5Ti alloy exhibits creep strength somewhat higher than that of V-4Cr-4Ti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.