Abstract
Metal creep has been a subject of extensive study for more than 110 years because it affects the useful life of engineering components operating at high temperatures. This is even more true with ever-increasing operating temperatures of propulsion/power-generation systems and the environmental regulations to reduce greenhouse emissions. This review summarizes the recent development in creep modeling with regards to creep strain evolution, creep rate, creep ductility, creep life, and fracture mode, attempting to provide a comprehensive mechanism-based framework to address all the important creep phenomena and the long-standing issue of long-term creep life prediction with microstructural evolution and environmental effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.