Abstract

AbstractThe effects of silt-sized particles (average diameter of 50 μm) on the compressive creep of polycrystalline ice have been studied at stress levels from 0.1 to 1.45 MPa and temperatures of –12ºC and –10°C. Dislocation densities during creep have been estimated using a dislocation-based model of anelasticity. The results indicate that at low concentrations (up to 4wt.%), particles increase the minimum creep rate. Power-law behavior with an exponent of 3 was observed for both particle-free ice and ice with 1 wt.% particles when the stress was >0.3 MPa. In contrast, linear behavior was observed when the stress was <0.3 MPa. Calculations show that the linear behavior is associated with a constant dislocation density, and the power-law behavior is associated with increasing dislocation densities with increasing stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call