Abstract

Polyethylene pipes are widely used in water supply, gas, and sewage systems due to their excellent mechanical properties. A slow crack growth is the primary fracture mechanism for the pipes under long-term internal pressures. If the creep loading is treated as a special case of fatigue loading, the slow crack growth kinetics of polyethylene is defined in fatigue fracture tests at different stress ratios and extrapolated to creep crack kinetics. Linear elastic fracture mechanics concepts became the basis for predicting the creep lifetime of pressure-tight pipes subjected to various hoop stresses from extrapolated (synthetic) creep crack growth curves, and the prediction is in good agreement with the standard extrapolation in accordance with ISO 9080.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.