Abstract

AbstractCreep deformation and rupture behavior of welded joints from service‐exposed P91 steel were investigated by creep tests and microstructure examination. A series of miniature tensile creep tests were conducted at 569°C under applied stresses ranging from 182.5 to 286 MPa for the heat‐affected zone (HAZ), base metal, and weld metal. Creep deformation behavior was modeled using the experimentally measured creep strain data as the primary creep‐secondary creep (PC‐SC) model and fitting closely with the measured creep curves of each metal. Power‐law type creep equations were employed to describe the primary and secondary creep behavior. The creep rupture life of the cross‐weld specimen was predicted using the PC‐SC model with HAZ properties. An accurate prediction was possible if the stress in estimation was increased to 1.14 times of the actual applied stress. The creep test results with the cross‐weld specimens were used for verification. Applying the Monkman–Grant relationship and the creep damage tolerance factors to the cross‐weld joint life prediction are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.