Abstract
Creep/fatigue accelerated failures of K403 superalloy turbine blades are inspected, and the damage behaviors are revealed and failure modes are determined in laboratory. It is concluded that: (1) significant discrepancies of fractographies and cross-sectional microstructures are interpreted by qualitative and quantitative investigations; (2) the observed morphologies are mainly attributed to the dendrite separation and γ' phase rafting behaviors, together with the development of ‘void migration mechanism’, i.e., grain interior → grain boundary → sub grain boundary; (3) the failure of turbine blade changes from the mixed to the intergranular mode, which is essentially controlled by the contribution proportion of creep damage and fatigue damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.