Abstract

Additive manufacture and rapid prototyping are versatile methods for the generation of lattice materials for applications in the creep regime. However, these techniques introduce defects that can degrade the macroscopic creep strength. In the present study, the uniaxial tensile response of two-dimensional PMMA lattices is measured in the visco-plastic regime: tests are performed at 100 °C which is slightly below the glass transition temperature Tg of PMMA. Both as-manufactured defects (Plateau borders and strut thickness variation) and as-designed defects (missing cell walls, solid inclusions, and randomly perturbed joints) are introduced. The dispersion in macroscopic strength is measured for relative densities in the range of 0.07–0.19. It is observed that initial failure of the lattice is diffuse in nature: struts fail at a number of uncorrelated locations, followed by the development of a single macroscopic crack transverse to the loading direction. In contrast, the same PMMA lattice fails in a correlated, brittle manner at room temperature. An FE study is performed to gain insight into the diffuse failure mode and the role played by as-manufactured defects, including the dispersion in tensile strength of individual struts of the lattice. A high damage tolerance to as-designed defects is observed experimentally: there is negligible knock-down in strength due to the removal of cell walls or to the presence of solid inclusions. These findings aid the design and manufacture of damage tolerant lattices in the creep regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.