Abstract

The reliability of solder joints in electronic products has received a lot of concern. The creep behavior is an important property for lead-free solder. In this research, creep tests were conducted to the Sn3.0Ag0.5Cu solder joints. Creep failure mechanism was analyzed and creep life was evaluated based on the Monkman–Grant and Larson–Miller parameter model. The results show that separation is easy to take place at dendrite grain boundaries. Creep cavity initiates at triple junctions of dendrite grains in solder matrix near the intermetallic compound layer. The creep fracture morphology at low temperature and high stress comprises three regions: the shear plane, shear lip and the instantaneous rupture zone. However, the shear plane region is disappeared with increasing the temperature and decreasing the stress. The rupture surface is characterized by the shear lip and inter-granular failure morphology. The Monkman–Grant equation and Larson–Miller parameter model can be used to predict the solder joint creep life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.