Abstract

ABSTRACTThe effects of selected factors such as vapor‐grown carbon nanofiber (VGCNF) weight fraction, applied stress, and temperature on the viscoelastic responses (creep strain and creep compliance) of VGCNF/vinyl ester (VE) nanocomposites were studied using a central composite design (CCD). Nanocomposite test articles were fabricated by high‐shear mixing, casting, curing, and post curing in an open‐face mold under a nitrogen environment. Short‐term creep/creep recovery experiments were conducted at prescribed combinations of temperature (23.8–69.2°C), applied stress (30.2–49.8 MPa), and VGCNF weight fraction (0.00–1.00 parts of VGCNF per hundred parts of resin) determined from the CCD. Response surface models (RSMs) for predicting these viscoelastic responses were developed using the least squares method and an analysis of variance procedure. The response surface estimates indicate that increasing the VGCNF weight fraction marginally increases the creep resistance of the VGCNF/VE nanocomposite at low temperatures (i.e., 23.8–46.5°C). However, increasing the VGCNF weight fraction decreased the creep resistance of these nanocomposites for temperatures greater than 50°C. The latter response may be due to a decrease in the nanofiber‐to‐matrix adhesion as the temperature is increased. The RSMs for creep strain and creep compliance revealed the interactions between the VGCNF weight fraction, stress, and temperature on the creep behavior of thermoset polymer nanocomposites. The design of experiments approach is useful in revealing interactions between selected factors, and thus can facilitate the development of more physics‐based models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42162.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.