Abstract

AbstractMuch of the surface of an ice shelf is covered with series of undulations. These undulations or “pressure rollers” are particularly noticeable in the neighbourhood of ice rises or ice streams. To date, there is no satisfactory theoretical model explaining the formation of these waves. As a contribution to understanding this phenomenon, this paper investigates the stability of ice shelves to perturbations in the background stress and strain-rate distributions.The perturbation analysis is based on Glen’s creep law and leads to a continuous eigenvalue problem for the wavelength of the disturbance as a function of growth-rate. It is shown that, provided these strain-rates are sufficiently compressive, waves of the type observed can be expected to form. It is shown that lateral extensional strain-rates have a destabilizing effect and pressure rollers are more likely to form when these are present. Comparison of predicted wavelengths is made with available field data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.