Abstract

Al 2O 3–5 vol.% Y 3Al 5O 12 (YAG) composite powders have been prepared by surface doping of α-alumina powders by an yttrium chloride aqueous solution. Two commercial, one submicron-sized, the other ultra-fine, alumina powders were compared as matrix materials. YAG phase was yielded by an in situ reaction promoted by the subsequent thermal treatment of the doped powders. In particular, a flash soaking into a tubular furnace kept at a fixed temperature in the range 1050–1150 °C was employed, for inducing the crystallization of yttrium-aluminates on the alumina particles surface, but avoiding a relevant crystallites growth. After that, aqueous suspensions of the calcined powders were dispersed by ball-milling and cast into porous moulds or simply dried in a oven. Slip cast green bodies were densified by pressure-less sintering, while powdered samples were consolidated by hot pressing or spark plasma sintering. The low- and high-temperature mechanical performances of the sintered materials were investigated and related to monolithic aluminas behaviour as well as to the composites microstructures. It is shown that the hot-pressed and spark plasma sintered composites present a significantly lower creep rate as compared to reference, monolithic alumina samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.