Abstract

To understand the creep damage mechanism of a standard 3D Carbon fiber reinforced silicon carbide composite (C/SiC) in high temperature combustion gas at 1300 °C, the creep tests were carried out in a combustion wind tunnel and the mechanisms were investigated by the extension of specimens and the microstructure of fracture section. It was found that the external tensile load was bore by the carbon fibers in the active region during the stressed oxidation process. The oxidation mechanisms of the active region were determined by a normalized threshold stress. Below the normalized threshold stress, the oxidation was controlled by internal diffusion of oxidizing gases through microcracks in SiC matrix. Above the normalized threshold stress, the oxidation was controlled by the reaction of carbon fiber with oxygen and water vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call