Abstract

Moisture in wood acting as a plasticizer will strongly affect the wood’s viscoelastic properties. However, achieving the desired moisture content (MC) at elevated temperatures during creep tests is difficult. The aim of this study is to accurately and systematically investigate the creep behavior of birch wood at high temperatures. Experiments were conducted using a dynamic mechanical analyzer with a relative humidity accessory coupled with polyvinylidene chloride (PVDC) film for wrapping samples. Creep behavior was examined at six MCs (0%, 6%, 12%, 18%, 24%, >30%) and 11 temperatures (5 to 105 °C). The MC of wood was strictly and accurately controlled during creep tests. Instantaneous compliance (IC) and creep compliance (CC) increased with the increase of both temperature and MC, with significant changes at higher temperatures and MCs. The effects on IC and CC were more pronounced when the subject was influenced by MC, with readings approximately three times and one time greater than those influenced by temperature, respectively. Dramatic increases in CC were found at certain temperatures and MC values. There was a complex interaction between temperature and MC on IC and CC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.