Abstract

Creep deformation and rupture behavior of nitrogen-alloyed (0.14 wt.%) nuclear grade 316LN austenitic stainless steel were investigated for the varying stress levels at 873 K and 923 K. The power-law dependency of creep properties such as steady-state creep rate and rupture life on applied stress was observed. For a given applied stress condition, a systematic increase in strain to failure was noticed with increasing temperature from 873 K to 923 K. Irrespective of test temperatures, creep rupture elongation of the steel increased with the increase in rupture lifetime ( $t_{r}$ ) for $t_{r} > 1000$ h. Analysis indicated that the interdependency between creep properties could be well described by the modified Monkman-Grant relationship. The predominance of inter-granular fracture arising from the triple point cracks and/or coalescence of cavities was observed at all the tested conditions for the steel. The enhanced tendency for wedge cracking was noticed for high stress levels at 873 K and 923 K. The evaluated damage tolerance factor $(\lambda ) < 5$ and the calculated ratio between time to reach the Monkman-Grant strain and creep rupture lifetime in the range of 0.69 to 0.80 indicated the accumulation of Monkman-Grant strain for the major fraction of lifetime during creep deformation of 316LN steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call