Abstract

The shape-memory effect and superelasticity properties of NiTinol alloys make them a versatile candidate for various engineering and biomedical applications. The use of these alloys as biomedical implants necessitates the study of any long-term creep failure possibility. The present study utilizes the finite element method to investigate this creep behavior of NiTinol alloys under static and dynamic loading conditions over a long period. The Maxwell creep model has been implemented, as well as validated with the polypropylene and low-density polyethylene. Further, the same model has been utilized for the creep analysis of NiTinol with suitable material properties and assumptions, for a time of 10,000 h. The results demonstrated the application of sinusoidal varying loads, the creep strain observed was lower as compared to other loading conditions, and in the case of static load, higher creep strain values were experienced than that of the dynamic smooth step loading case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call