Abstract

The creep behavior of fiber-reinforced polymer (FRP) reinforced larch laminar timber was studied with respect to temperature and humidity fluctuations. There was a control group of larch laminated with two small-diameter timbers with FRP (carbon FRP (CFRP), glass FRP (GFRP)) produced; the laminated lumber had the same cross-sectional area as the two laminated lumber specimens with reinforced tensile parts. A creep test with fluctuating temperature and humidity was conducted by applying a load of 25% of the bending strength of the control specimen. A total of 8 specimens, 2 for each type, were measured for creep deformation at 9:00 am and 6:00 pm daily for approximately 14,000 h. Temperature and humidity fluctuations were measured every hour. The equilibrium moisture content and humidity of the creep test space exhibited a proportional relationship, and the moisture content of each specimen did not show a noticeable correlation with humidity and equilibrium moisture content. The average relative creep was measured as approximately 0.67 for the control, 0.4 for Glulam, and 0.43 for both the CFRP- and GFRP-reinforced specimens. Thus, the creep deformation of all the reinforced pieces was confirmed to be lower than that of the control specimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call