Abstract

Ceramic crown structures under occlusal contact are often idealized as flat multilayered structures that are deformed under Hertzian contact loading. Previous models treated each layer as linear elastic materials and resulted in differences between the measured and predicted critical loads. This paper examines the combined effects of creep (in the adhesive and substrate layers) and creep-assisted slow crack growth (in the ceramic layer) on the contact-induced deformation of bio-inspired, functionally graded multilayer (FGM) structures and the conventional tri-layers. The time-dependent moduli of each of the layers were determined from constant load creep tests. The resulting modulus–time characteristics were modeled using Prony series. These were then incorporated into a finite element model for the computation of stress distributions in the sub-surface regions of the top ceramic layer, in which sub-surface radial cracks, are observed as the clinical failure mode. The time-dependent stresses are incorporated into a slow crack growth (SCG) model that is used to predict the critical loads of the dental multilayers under Hertzian contact loading. The predicted loading rate dependence of the critical loads is shown to be consistent with experimental results. The implications of the results are then discussed for the design of robust dental multilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.