Abstract

The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and γ′ precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 °C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 °C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 °C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles. The analysis indicates that at the intermediate temperature the creep strength is controlled by the high volume fraction of γ′ precipitates and the contribution to the creep strength from the oxide dispersion is small. At the elevated temperature, the creep strength is derived mainly from the inert oxide dispersoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.