Abstract
The Schapery's nonlinear viscoelastic theory and nonlinear force-density method have been investigated to analyze the creep and recovery behaviors of space deployable mesh reflectors in this paper. Based on Schapery's nonlinear viscoelastic theory, we establish the creep and recovery constitutive model for cables whose pretensions were applied stepwise in time. This constitutive model has been further used for adjustment of cables’ elongation rigidity. In addition, the time-dependent tangent stiffness matrix is calculated by the partial differentiation of the corresponding load vector with respect to the nodal coordinate vector obtained by the nonlinear force-density method. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the time-dependent nonlinear statics equations. Finally, a hoop truss reflector antenna is presented as a numerical example to illustrate the efficiency of the proposed method for the creep and recovery behavior analysis of space deployable mesh structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.