Abstract

The creep behavior and microstructure of powder metallurgy (PM) 15 vol.% silicon particulate-reinforced 2009 aluminum alloy (SiCp–2009 Al composite) and its matrix PM 2009 Al were investigated over six orders of magnitude of strain rate and at temperatures in the range 618–678 K. The results show that the creep behavior of PM 15% SiCp–2009 Al composite resembles that of PM 2009 Al with regard to (a) the variations in both the apparent stress exponent and the apparent activation energy for creep due to applied stress, (b) the value of the true stress exponent, (c) the value of the true activation energy for creep, (d) the interpretation of creep in terms of a threshold stress, and (e) the temperature dependence of threshold stress. This resemblance implies that deformation in the matrix governs deformation in the composite. Analysis of the creep data in terms of creep rate against an effective stress shows that the creep behaviors of the composite and unreinforced alloy are consistent with the operation of viscous glide creep at low stresses. A comparison between the creep data of the composite and those of the unreinforced matrix revealed that the composite exhibited more creep-resistant characteristics than its matrix over the entire range of applied stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.