Abstract

Abstract Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) of the very high temperature reactor (VHTR), expected to have an outlet temperature as high as 950°C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Strain-controlled low cycle fatigue (LCF) tests including hold times up to 1800 s at maximum tensile strain were conducted at 950°C and a total strain range of 0.3 % in air and in a simulated VHTR impure helium. For similar test conditions, the creep-fatigue behavior was globally similar in both environments. The fatigue resistance decreased when a hold time was added at peak tensile strain, consistent with the observed change in fracture mode from transgranular to intergranular. Further increases in the tensile hold time, beyond 180 s, were not detrimental to the creep-fatigue resistance. The influence of oxidation on the fatigue crack initiation and propagation is discussed. Bulk damage in the form of grain boundary cracking was present in the interior of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 s consistent with the saturation in failure lives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.