Abstract

Abstract The investigations of high-temperature creep properties of advanced ferritic/martensitic steels for 650 °C power plant components focus on the chemical composition as well as on the heat treatment conditions. First experiments on various modifications of the 9% Cr model piping steel P92 demonstrate a negative influence of 12% Cr, 5% Co and low tempering conditions on the creep rupture strength up to 104 h operating time. Low tempering conditions promote the precipitation of the modified Z-phase Cr(V, Nb) N during creep. This phase was recently identified as a major cause for premature breakdown in creep strength of some 9 – 12% Cr martensitic steels. The aim “650 °C/100 MPa/100 000 h” in creep life was not achieved in this investigation so far. The effect of boron on the improvement of creep behaviour depends on the interaction of chemical composition and heat treatment. Further activities focus on the stabilization of M23C6, a fine distribution of VN and measures for avoidance of Z-phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.