Abstract

Typical pressure vessels are subject to biaxial loading. Creep analysis was conducted with two-dimensional finite element method for a center-cracked plate under a range of biaxial loading ratios (λ = −1, 0, and 0.5). The effects of crack size and the biaxial loading ratio on the crack tip field are reported. In addition, based on a two-parameter fracture theory, C(t)−A2(t), where C is a contour integral and is path-independent when the steady state creep is reached (denoted by C*), and A2 is a time dependent crack tip constraint parameter. The crack tip stress field calculated from the C(t)−A2(t) theory is shown to be more accurate than the Hutchinson–Rice–Rosengren (HRR) singularity solution, especially in the case of λ = 0.5. The loading level appears to have little effects on the constraint parameter A2(t). As creep time increases, the creep zone (based on the equivalent creep strain) increases rapidly but the yield zone (with respect to a reference stress) decreases. Meanwhile, the crack tip constraint is increasing with creep time, particularly for the small cracks. It was also found that the normalized relationship between the contour integral C(t)/C* and the creep time t/tT (where tT is the characteristic time for transition from small-scale creep to extensive creep) is insensitive to the biaxial loading. Therefore, the relationship previously provided for uniaxial loading can be used for biaxial loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call