Abstract

Motivated by the interplay between structural and reduced form credit models, we propose to model the firm value process as a time-changed Brownian motion that may include jumps and stochastic volatility effects, and to study the first passage problem for such processes. We are lead to consider modifying the standard first passage problem for stochastic processes to capitalize on this time change structure and find that the distribution functions of such "first passage times of the second kind" are efficiently computable in a wide range of useful examples. Thus this new notion of first passage can be used to define the time of default in generalized structural credit models. Formulas for defaultable bonds and credit default swaps are given that are both efficiently computable and lead to realistic spread curves. Finally, we show that by treating joint firm value processes as dependent time changes of independent Brownian motions, one can obtain multifirm credit models with rich and plausible dynamics and enjoying the possibility of efficient valuation of portfolio credit derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.