Abstract
As online P2P loans in automotive financing grows, there is a need to manage and control the credit risk of the personal auto loans. In this paper, the personal auto loans data sets on the Kaggle platform are used on a machine learning based credit risk assessment mechanism for personal auto loans. An integrated Smote-Tomek Link algorithm is proposed to convert the data set into a balanced data set. Then, an improved Filter-Wrapper feature selection method is presented to select credit risk assessment indexes for the loans. Combining Particle Swarm Optimization (PSO) with the eXtreme Gradient Boosting (XGBoost) model, a PSO-XGBoost model is formed to assess the credit risk of the loans. The PSO-XGBoost model is compared against the XGBoost, Random Forest, and Logistic Regression models on the standard performance evaluation indexes of accuracy, precision, ROC curve, and AUC value. The PSO-XGBoost model is found to be superior on classification performance and classification effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.