Abstract
In many credit risk and pricing applications, credit transition matrix is modeled by a constant transition probability or generator matrix for Markov processes. Based on empirical evidence, we model rating transition processes as piecewise homogeneous Markov chains with unobserved structural breaks. The proposed model provides explicit formulas for the posterior distribution of the time-varying rating transition generator matrices, the probability of structural break at each period and prediction of transition matrices in the presence of possible structural breaks. Estimating the model by credit rating history, we show that the structural break in rating transitions can be captured by the proposed model. We also show that structural breaks in rating dynamics are different for different industries. We then compare the prediction performance of the proposed and time-homogeneous Markov chain models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.