Abstract
The payoff of many credit derivatives depends on the level of credit spreads. In particular, credit derivatives with a leverage component are subject to gap risk, a risk associated with the occurrence of jumps in the underlying credit default swaps. In the framework of first passage time models, we consider a model that addresses these issues. The principal idea is to model a credit quality process as an Ito integral with respect to a Brownian motion with a stochastic volatility. Using a representation of the credit quality process as a time-changed Brownian motion, one can derive formulas for conditional default probabilities and credit spreads. An example for a volatility process is the square root of a Levy-driven Ornstein-Uhlenbeck process. The model can be implemented efficiently using a technique called Panjer recursion. Calibration to a wide range of dynamics is supported. We illustrate the effectiveness of the model by valuing a leveraged credit-linked note.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.