Abstract
The purpose of this paper is to explore and compare the credibility premiums in generalized zero-inflated count models for panel data. Predictive premiums based on quadratic loss and exponential loss are derived. It is shown that the credibility premiums of the zero-inflated model allow for more flexibility in the prediction. Indeed, the future premiums not only depend on the number of past claims, but also on the number of insured periods with at least one claim. The model also offers another way of analysing the hunger for bonus phenomenon. The accident distribution is obtained from the zero-inflated distribution used to model the claims distribution, which can in turn be used to evaluate the impact of various credibility premiums on the reported accident distribution. This way of analysing the claims data gives another point of view on the research conducted on the development of statistical models for predicting accidents. A numerical illustration supports this discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.