Abstract
With the prevalence of e-commerce, online product reviews are increasingly considered crowd-sourced consumer opinions that significantly influence customer purchasing decisions and product rankings. It is therefore important to ensure the truthfulness of reviews by detecting and filtering out fake/spam reviews. This article presents an effective framework to analyze review credibility for spam detection and opinion mining. It incorporates three methods: duplicated review detection, anomaly detection, and incentivized review detection, that complement each other to produce statistical credibility scores indicating review credibility. A practical end-to-end system is designed and developed accordingly, and is equipped with high-level data visualization for easy interpretation and summarization of the analysis results. Experiments on an Amazon review dataset demonstrate its efficiency, scalability and accuracy. This system could help e-commerce and consumers identify fake reviews, refine product rankings, and constrain vendors and spammers from engaging in dishonest practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia Data Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.