Abstract

Credal networks are imprecise probabilistic graphical models generalizing Bayesian networks to convex sets of probability mass functions. This makes credal networks particularly suited to model expert knowledge under very general conditions, including states of qualitative and incomplete knowledge. In this paper, we present a credal network for risk evaluation in case of intrusion of civil aircrafts into a restricted flight area. The different factors relevant for this evaluation, together with an independence structure over them, are initially identified. These factors are observed by sensors, whose reliabilities can be affected by variable external factors, and even by the behaviour of the intruder. A model of these observation processes, and the necessary fusion scheme for the information returned by the sensors measuring the same factor, are both completely embedded into the structure of the credal network. A pool of experts, facilitated in their task by specific techniques to convert qualitative judgements into imprecise probabilistic assessments, has made possible the quantification of the network. We show the capabilities of the proposed model by means of some preliminary tests referred to simulated scenarios. Overall, we can regard this application as a useful tool to support military experts in their decision, but also as a quite general imprecise-probability paradigm for information fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.