Abstract

In vitro and in vivo studies implicate that follicle-stimulating hormone (FSH) and transforming growth factor β1 (TGFβ1) play crucial physiological roles in regulating ovarian granulosa cell function essential to fertility control in females. FSH induces cAMP and calcium signaling, thereby activating transcription factor CREB to upregulate steroidogenic gene expression, and TGFβ1 greatly enhances FSH-stimulated steroidogenesis. A CREB coactivator CRTC2/TORC2 was identified to function as a cAMP and calcium-sensitive coincidence sensor. This led us to explore the role of CRTC2 and its regulator calcineurin in FSH and TGFβ1-stimulated steroidogenesis. Primary culture of granulosa cells from gonadotropin-primed immature rats was used. Immunoblotting analysis shows that FSH rapidly and transiently induced dephosphorylation/activation of CRTC2, and FSH + TGFβ1 additionally induced late-phase CRTC2 dephosphorylation. Immunofluorescence analysis further confirms FSH ± TGFβ1 promoted CRTC2 nuclear translocation. Using selective inhibitors, we demonstrate that FSH activated CRTC2 in a PKA- and calcineurin-dependent manner, and TGFβ1 acting through its type I receptor (TGFβRI)-modulated FSH action in a calcineurin-mediated and PKA-independent fashion. Next, we investigated the involvement of calcineurin and CRTC2 in FSH and TGFβ1-stimulated steroidogenesis. Calcineurin and TGFβRI inhibitor dramatically reduced the FSH ± TGFβ1-increased progesterone synthesis and protein levels of StAR, P450scc, and 3β-HSD enzyme. Furthermore, chromatin-immunoprecipitation and immunoprecipitation analyses demonstrate that FSH ± TGFβ1 differentially increased CRTC2, CREB, and CBP binding to these steroidogenic genes, and CREB nuclear association with CRTC2 and CBP. In all, this study reveals for the first time that CRTC2 and calcineurin are critical signaling mediators in FSH and TGFβ1-stimulated steroidogenesis in ovarian granulosa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.