Abstract

Background and aimsUremic patients are characterized by an increased risk of atherosclerotic cardiovascular diseases. Vascular smooth muscle cell (VSMC) proliferation contributes to neointimal formation, a main pathological feature in atherosclerosis. Activation of CREB/ATF3 signaling is pivotal in VSMC proliferation, yet its role in uremic atherosclerosis is unknown. This study aimed to explore whether CREB/ATF3 signaling is involved in the molecular mechanism underlying neointimal formation in uremia. Methods and resultsTreatment of VSMCs with uremic toxin (indoxyl sulfate [IS]) activated cAMP/CREB/ATF3/cyclin D signaling, which was reflected by increased VSMC proliferation. Blocking cAMP/PKA/CREB/ATF3 signaling attenuated the promoting effect of IS on cyclin D1 expression and VSMC proliferation. Loss-of-function and time-dependent experiments showed that ATF3 lies downstream of the CREB signaling. Mutational analysis of cyclin D1 promoter along with chromatin immunoprecipitation assays showed that CREB/ATF3 signaling participated in IS-induced cyclin D transcription. In vivo, phosphorylated CREB (an active form of CREB) and ATF3 were prominently upregulated in the neointima of experimental uremic rats, the atherosclerotic plaques of uremic ApoE−/− mice, and the iliac arteries of uremic patients. Notably, the use of lentivirus to knock down ATF3 in the neointima of balloon-injured arteries could suppress the effect of uremia in vivo, including neointimal formation and cyclin D expression. ConclusionsIn this study, we demonstrated that CREB/ATF3-related signaling may be involved in IS-induced VSMC proliferation and the pathogenesis of neointimal formation during uremia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call