Abstract

The congruency sequence effect (CSE) describes the finding that congruency effects in classic probes of selective attention (like the Stroop, Simon, and flanker tasks) are smaller following an incongruent than following a congruent trial. The past two decades have generated a large literature on determinants and boundary conditions for the CSE and similar, congruency-proportion based modulations of congruency effects. A prolonged and heated theoretical discussion has been guided primarily by a historically motivated dichotomy between “top-down control” versus “associative bottom-up” explanations for these effects. In the present article, I attempt to integrate and contextualize the major empirical findings in this field by arguing that CSEs (and related effects) are best understood as reflecting a composite of multiple levels of learning that differ in their level of abstraction. Specifically, learning does not only involve the trial-by-trial encoding, binding, and cued retrieval of specific stimulus–response associations, but also of more abstract trial features. Moreover, these more abstract trial or event features can be both external, such as the spatial and temporal context in which a stimulus occurs, as well as internal, like the experience of difficulty, and the attentional control settings that were employed in dealing with the stimulus. From this perspective, top-down control and bottom-up priming processes work in concert rather than in opposition. They represent different levels of abstraction in the same learning scheme and they serve a single, common goal: forming memory ensembles that will facilitate fast and appropriate responding to recurring stimuli or events in the environment.

Highlights

  • Tests of the effectiveness of controlled attention typically require participants to produce a response to a task-relevant stimulus feature in the presence of task-irrelevant stimulus features, which can be either congruent or incongruent with the former

  • The relative success of attentional filtering is gauged by contrasting performance on trials where the distracter is congruent with those where it is incongruent with the target, and may interfere with target processing unless it is effectively ignored

  • The latter refers to the so-called congruency sequence effect (CSE), the finding that the influence of distracters on the processing of target information is typically dampened on trials that follow an incongruent trial compared to those that follow a congruent trial (Figure 1A; for reviews, see Egner, 2007; Duthoo et al, 2014a)

Read more

Summary

INTRODUCTION

Tests of the effectiveness of controlled attention typically require participants to produce a response to a task-relevant stimulus feature (target information) in the presence of task-irrelevant stimulus features (distracter information), which can be either congruent or incongruent with the former. The size of the congruency effect, and by implication, the effectiveness of attentional filtering, has been shown to be malleable by a variety of factors, such as the frequency of incongruent stimulus occurrences (Logan and Zbrodoff, 1979), the explicit cueing of forthcoming congruency (Gratton et al., 1992), and the congruency of the previous trial (Gratton et al, 1992) The latter refers to the so-called congruency sequence effect (CSE), the finding that the influence of distracters on the processing of target information is typically dampened on trials that follow an incongruent trial compared to those that follow a congruent trial (Figure 1A; for reviews, see Egner, 2007; Duthoo et al, 2014a). I will first provide a brief overview of some rival CSE accounts and the empirical status quo, followed by the main argument for viewing distinct sources of CSEs as describing different, co-occurring levels of a broader learning process aimed at optimizing stimulus processing and action selection

A SELECTIVE COMPENDIUM OF CSE ACCOUNTS
A MULTI-LEVEL LEARNING PERSPECTIVE ON THE MODULATION OF CONGRUENCY EFFECTS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call