Abstract
Deep learning, one of the fastest-growing branches of artificial intelligence, has become one of the most relevant research and development areas of the last years, especially since 2012, when a neural network surpassed the most advanced image classification techniques of the time. This spectacular development has not been alien to the world of the arts, as recent advances in generative networks have made possible the artificial creation of high-quality content such as images, movies or music. We believe that these novel generative models propose a great challenge to our current understanding of computational creativity. If a robot can now create music that an expert cannot distinguish from music composed by a human, or create novel musical entities that were not known at training time, or exhibit conceptual leaps, does it mean that the machine is then creative? We believe that the emergence of these generative models clearly signals that much more research needs to be done in this area. We would like to contribute to this debate with two case studies of our own: TimbreNet, a variational auto-encoder network trained to generate audio-based musical chords, and StyleGAN Pianorolls, a generative adversarial network capable of creating short musical excerpts, despite the fact that it was trained with images and not musical data. We discuss and assess these generative models in terms of their creativity and we show that they are in practice capable of learning musical concepts that are not obvious based on the training data, and we hypothesize that these deep models, based on our current understanding of creativity in robots and machines, can be considered, in fact, creative.
Highlights
The field of deep learning (DL), one of the branches of artificial intelligence (AI), has become one of the most relevant and fast-growing research and development areas of recent times, especially since 2012, when an artificial neural network (ANN) called AlexNet (Krizhevsky et al, 2012) surpassed the most advanced image classification techniques to the date (Briot et al, 2020)
Piano rolls are a widely used two-dimensional representation of musical data, very similar to a musical score in the sense that the x-axis represents time while pitches are encoded in the y-axis. We believe that both generative models, even though they have different architectures and music representations, exhibit behavior that could be classified as creative, as they can represent musical concepts that are not obvious based on the training data, and exhibit conceptual leaps
If a chord-generating neural network trained with tertian triads exclusively can generate, after training, a dominant or minor-minor seventh chord, musical entities that the network had no clue they existed at all, does that make it a creative artificial intelligence? We believe that the answer must be yes, as the concept of a seventh chord is at the core of musical knowledge, and it is not trivial to derive from only regular tertian triads
Summary
The field of deep learning (DL), one of the branches of artificial intelligence (AI), has become one of the most relevant and fast-growing research and development areas of recent times, especially since 2012, when an artificial neural network (ANN) called AlexNet (Krizhevsky et al, 2012) surpassed the most advanced image classification techniques to the date (Briot et al, 2020). This AI boom has happened because of three factors: first, today there is much more data available, second, there are much faster and more powerful computers available to researchers and third, technical advances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.