Abstract

BackgroundMalaria in pregnancy is one of the most common preventable causes of maternal and neonatal morbidity and mortality in sub-Saharan Africa. To prevent its adverse effects, such as maternal anaemia, placental parasitaemia and low birth weight (LBW) neonates, the World Health Organization recommends effective malaria case management, use of insecticide-treated bed nets and intermittent preventive therapy in pregnancy (IPTp). Sulphadoxine-pyrimethamine (SP) has been the standard for IPTp in several countries, but parasite resistance to SP is growing. Therefore, new IPTp therapies are urgently needed. One candidate being evaluated for IPTp is a fixed-dose combination of azithromycin and chloroquine (AZCQ). This paper describes the challenges and the innovative solutions implemented in designing and conducting a pivotal AZCQ-IPTp trial, sponsored by Pfizer Inc and co-funded by Pfizer Inc and the Medicines for Malaria Venture.MethodsThe AZCQ-IPTp pivotal trial is a multicentre, multicountry, phase III, open-label, randomized superiority study of AZCQ-IPTp versus SP-IPTp in pregnant women of sub-Saharan Africa. The trial was designed to meet stringent regulatory agency scientific advice and IPTp policy makers’ recommendations, and incorporates an innovative adaptive design to manage programme risk, maintain the operating characteristics of the study and optimize resources. The trial’s novel composite primary endpoint is the proportion of participants with a suboptimal pregnancy outcome (abortion [≤28 weeks], stillbirths [>28 weeks], premature [<37 weeks] deliveries, LBW [<2,500 g] live neonates, missing neonatal birth weight data or loss to follow-up). The study employs a prospective group sequential design with three unblinded analyses when 50%, 70% and 100% of participants achieve the primary endpoint; the study team will remain blinded to the analyses until after the completion of the study. The number of participants randomized will be adaptive, based on the blinded review of the observed pooled primary endpoint data across the two treatment arms, when approximately 1,000 participants complete the primary endpoint assessments.ResultsThis study is ongoing and expected to complete in 2014.ConclusionThis report describes the unique challenges and innovative solutions implemented in designing and conducting this pivotal AZCQ-IPTp trial, which may serve as a prototype for future IPTp and other studies involving similar conditions.

Highlights

  • Malaria in pregnancy is one of the most common preventable causes of maternal and neonatal morbidity and mortality in sub-Saharan Africa

  • Intermittent preventive therapy in pregnancy (IPTp) is one of the key strategies recommended by the World Health Organization (WHO) Global Malaria Programme (GMP) for malaria control in areas of stable and high malaria transmission where many pregnant women with malaria infection remain asymptomatic [9]

  • IPTp is based on the administration of a complete curative dosing regimen of anti-malarial drug(s) at routine periodic antenatal visits during pregnancy and may provide protection over and above any protection provided by the use of bed nets [10]

Read more

Summary

Introduction

Malaria in pregnancy is one of the most common preventable causes of maternal and neonatal morbidity and mortality in sub-Saharan Africa. To prevent its adverse effects, such as maternal anaemia, placental parasitaemia and low birth weight (LBW) neonates, the World Health Organization recommends effective malaria case management, use of insecticide-treated bed nets and intermittent preventive therapy in pregnancy (IPTp). The common adverse outcomes of malaria infection in pregnant women, with considerable acquired immunity, living in areas of high and stable P. falciparum malaria transmission, include maternal anaemia, placental parasitaemia and low birth weight (LBW; weighing

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call